
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Exception Handling

© 2023 Arthur Hoskey. All
rights reserved.

Exception Handling

 Exception – An indication of a problem that occurs
during a program’s execution.

 No need to terminate program when an error occurs

 Exception handling allows the program to continue
executing after dealing with the problem.

© 2023 Arthur Hoskey. All
rights reserved.

Error Handling Overview

 Normal Error Handling Pseudocode

Perform a task

If the preceding task did not execute correctly

Perform error processing

Perform next task

If the preceding task did not execute correctly

Perform error processing

… and so on

© 2023 Arthur Hoskey. All
rights reserved.

Error Handling Overview

 Exception handling allows you to remove error-
handling code from the "main line".

 In previous pseudocode you must check for errors
even if they occur infrequently.

 Benefits of removing from "main line".

◦ Improve program clarity

◦ Enhances modifiability

 You choose which exceptions to handle.

© 2023 Arthur Hoskey. All
rights reserved.

Error Handling Overview

 Exceptions are "thrown".

 When a method detects a problem and is unable
to handle it that method "throws" an exception.

 If an exception was thrown then an error has
occurred.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Divide By Zero

public static int quotient(int numerator, int denominator) {

return numerator / denominator;

}

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("Enter numerator: ");

int numerator = scanner.nextInt();

System.out.print("Enter denominator: ");

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

quotient method will throw an exception if dividing by zero

Divide by zero causes

exception to be thrown

© 2023 Arthur Hoskey. All
rights reserved.

Divide By Zero

 Stack Trace
◦ Gives the name of the exception that occurred.

◦ Shows the method-call stack at the time the
exception occurred.

© 2023 Arthur Hoskey. All
rights reserved.

Divide By Zero

 Throw Point – The initial point where the
exception occurs.

Where was the throw point in the
division error example?

© 2023 Arthur Hoskey. All
rights reserved.

Divide By Zero

public static int quotient(int numerator, int denominator)

{

return numerator / denominator;

}

public static void main(String[] args)

{

Scanner scanner = new Scanner(System.in);

int numerator = scanner.nextInt();

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

Throw Point

© 2023 Arthur Hoskey. All
rights reserved.

Divide By Zero

 Dividing by zero with int data type causes a
java.lang.ArithmeticException exception to be
thrown.

 An ArithmeticException is NOT the only exception that
can be thrown.

 There are many other types of exceptions that can be
thrown.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Wrong Input Type

public static int quotient(int numerator, int denominator)

{

return numerator / denominator;

}

public static void main(String[] args)

{

Scanner scanner = new Scanner(System.in);

int numerator = scanner.nextInt();

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

Both throw

exceptions if not

given an integer

© 2023 Arthur Hoskey. All
rights reserved.

Wrong Input Type

 Entering a string when an integer is
required will cause a
java.lang.InputMismatchException
exception to be thrown.

© 2023 Arthur Hoskey. All
rights reserved.

Divide By Zero

 The program STOPS executing when an
exception occurs.

Is this desirable behavior???

© 2023 Arthur Hoskey. All
rights reserved.

Handling Exceptions

 In the previous examples the program
stopped when an exception occurred.

 It would be better to "handle" the
exception and let the program keep
running.

© 2023 Arthur Hoskey. All
rights reserved.

Handling Exceptions

 Use a try/catch block to handle
exceptions.

 Any code that can throw an exception
should go inside the try/catch block.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

public static int quotient(int numerator, int denominator)

{ return numerator / denominator; }

public static void main(String[] args)

{

try

{

Scanner scanner = new Scanner(System.in);

int numerator = scanner.nextInt();

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

catch (…)

{ … }

}

Quotient call

inside of

try/catch block

Divide by zero

causes exception to

be thrown

What goes in the

catch block?
© 2023 Arthur Hoskey. All
rights reserved.

public static int quotient(int numerator, int denominator)

{ return numerator / denominator; }

public static void main(String[] args)

{

try

{

Scanner scanner = new Scanner(System.in);

int numerator = scanner.nextInt();

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

catch (ArithmeticException ae)

{

System.err.println("Error");

}

}

You "catch"

exceptions here

Divide by zero

causes exception to

be thrown

© 2023 Arthur Hoskey. All
rights reserved.

public static int quotient(int numerator, int denominator)

{ return numerator / denominator; }

public static void main(String[] args)

{

try

{

Scanner scanner = new Scanner(System.in);

int numerator = scanner.nextInt();

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

catch (ArithmeticException ae)

{

System.err.println(“Error”);

}

}

What happens if

an input

exception is

thrown?

© 2023 Arthur Hoskey. All
rights reserved.

Handling Exceptions

 The program will crash with an
InputMismatchException.

 Uncaught Exception – No matching catch block in
the try statement that threw the exception.

 The only exception that the previous program
handles is an ArithmeticException.

What can you do about this?

© 2023 Arthur Hoskey. All
rights reserved.

public static int quotient(int numerator, int denominator)

{ return numerator / denominator; }

public static void main(String[] args) {

try {

Scanner scanner = new Scanner(System.in);

int numerator = scanner.nextInt();

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

catch (ArithmeticException ae) {

System.err.println("Error – Divide by zero.");

}

catch (InputMismatchException ime) {

System.err.println("Error – Incorrect input.");

}

}

Add another

catch block

© 2023 Arthur Hoskey. All
rights reserved.

Handling Exceptions

 What will happen if an exception other
than an ArithmeticException or an
InputMismatchException occurs?

© 2023 Arthur Hoskey. All
rights reserved.

Handling Exceptions

 What will happen if an exception other than an
ArithmeticException or an
InputMismatchException occurs?

Answer:

Other exceptions area uncaught exceptions.

The program will crash and output a stack
trace for those exceptions.

© 2023 Arthur Hoskey. All
rights reserved.

Handling Exceptions

 In the previous example the exceptions
are handled but it does not "recover" from
the error.

 It would be better to give the user a
chance to re-enter data.

© 2023 Arthur Hoskey. All
rights reserved.

 Suppose that the user must enter a number and we do not want
the program to crash if they enter something else like a string.

boolean continueLoop = true;

int num = 0;

Scanner keyboard = new Scanner(System.in);

do {

try {

System.out.println("Enter a number");

num = keyboard.nextInt();

continueLoop = false;

} catch (InputMismatchException ime) {

keyboard.nextLine(); // Consume the newline character

System.out.println("Error - Enter a number");

}

} while (continueLoop);

// Code to use num goes here...

System.out.println(num);

© 2023 Arthur Hoskey. All
rights reserved.

If the input succeeds, then it will

go to the next statement and set

continueLoop to false

(this will cause the loop to end)

Initialize continueLoop

to true

If a string was entered for nextInt it will throw an

InputMismachException and be caught in the

catch block. continueLoop will still be true, and

the user will have to enter data again.

 Throws clause

 Part of a method declaration.

 Specifies the exceptions that a method throws.

 Quotient method contains a throws clause.

public static int quotient(int numerator, int denominator)

throws AritmeticException

{

return numerator / denominator;

}
Throws clause.

Indicates that

method quotient

throws an

ArithmeticException.

© 2023 Arthur Hoskey. All
rights reserved.

Java Exception Hierarchy

Exception

Hierarchy

Throwable

Exception Error

RuntimeException IOException

ClassCast
Exception

NullPointer
Exception

VirtualMachine
Error etc…

Arithmetic
Exception

ArrayIndexOutOf
BoundsException

Other Exceptions deriving from
Runtime Exception etc…

© 2023 Arthur Hoskey. All
rights reserved.

Checked Vs Unchecked Exceptions

 Java compiler enforces a "catch-or declare
requirement".

 Checked exception – A method that throws a
checked exception must be called under one of the
following circumstances:

◦ The method call must be inside of a try
statement that has a catch block for that
exception.

or

◦ The method call must be inside of another
method that "throws" that exception.

© 2023 Arthur Hoskey. All
rights reserved.

Checked Vs Unchecked Exceptions

 Unchecked exception – A method that throws
an unchecked exception has no restrictions for
calling it.

 Unchecked exceptions are derived from the
RuntimeException class.

 Checked exceptions are derived from the
Exception class but NOT the RuntimeException
class.

© 2023 Arthur Hoskey. All
rights reserved.

Java Exception Hierarchy

Checked vs

Unchecked

Throwable

Exception Error

RuntimeException

CheckedExceptions
are derived here

UncheckedExceptions
are derived here…

© 2023 Arthur Hoskey. All
rights reserved.

Checked Vs Unchecked Exceptions

 ArithmeticException is an unchecked exception.

 IOException is a checked exception.

 Checked exceptions are typically caused by
conditions that are out of the control of the
program.

◦ For example, cannot open a file.

© 2023 Arthur Hoskey. All
rights reserved.

Catch Block Order

 Some exceptions are derived from other exceptions.

 A try statement can catch both a base class exception
and an exception derived from that base class.

 For example, ArithmeticException is derived from
Exception (though not directly).

© 2023 Arthur Hoskey. All
rights reserved.

public static int quotient(int numerator, int denominator)

{ return numerator / denominator; }

public static void main(String[] args) {

try {

Scanner scanner = new Scanner(System.in);

int numerator = scanner.nextInt();

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

catch (ArithmeticException ae) {

System.err.println("Error – Divide by zero.");

}

catch (Exception e) {

System.err.println("Generic error handling");

}

}

Catches both

Arithmetic

Exception and

Exception.

What happens?

© 2023 Arthur Hoskey. All
rights reserved.

Catch Block Order

 Use the first matching catch block that is
compatible with the thrown exception.

 So the ArithmeticException catch will run in the
previous example.

 What happens if we change the order. For
example…

© 2023 Arthur Hoskey. All
rights reserved.

public static int quotient(int numerator, int denominator)

{ return numerator / denominator; }

public static void main(String[] args) {

try {

Scanner scanner = new Scanner(System.in);

int numerator = scanner.nextInt();

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

}

catch (Exception e) {

System.err.println("Generic error handling");

}

catch (ArithmeticException ae) {

System.err.println("Error – Divide by zero.");

}

}

Exception

comes first in

this example.

What happens?

© 2023 Arthur Hoskey. All
rights reserved.

Catch Block Order

 Compile error. Compiler will not let this happen.

 ArithmeticException is a type of Exception so it is
compatible with the Exception catch block.

 The ArithmeticException catch block would be
unreachable if this were allowed.

 You must be careful about the order of the catch
blocks.

© 2023 Arthur Hoskey. All
rights reserved.

finally Block

 finally blocks are used for "clean-up" code.

 Some resources need to be released or "cleaned-
up" when they are no longer needed.

 finally blocks are used for releasing resources
that are no longer needed.

© 2023 Arthur Hoskey. All
rights reserved.

try

{

// Code that throws exceptions

}

catch (…) {

// Catch code

}

catch (…) {

// Other catch code

}

finally

{

// Finally code goes here

// This is for resource clean-up

}

finally Block

When does the

finally block

execute?

© 2023 Arthur Hoskey. All
rights reserved.

finally Block

 finally block runs after try and catch are run.

 Java guarantees (kind of) that the finally block will
execute whether or not an exception is thrown in the try
block.

 finally block runs if:

◦ try block exits by normally reaching its ending curly
brace.

◦ try block exits by using return, break, continue.

◦ Exception is thrown within the try block and caught.

◦ Exception is thrown but not caught.

 finally block does NOT run if:

◦ try block exits by a call to System.exit (terminates JVM).

© 2023 Arthur Hoskey. All
rights reserved.

System.exit

 System.exit(0) immediately terminates the JVM which
ends the program.

 The finally block does NOT run when System.exit executes.

try {

int num1, num2, quotient;

num1 = 10;

num2 = 0;

System.exit(0);

quotient = Divide(num1, num2);

}

catch (Exception e)

{

System.err.println("Handled exception");

}

© 2023 Arthur Hoskey. All
rights reserved.

System.exit(0) immediately

terminates the JVM. The

finally block does not run.

Throwing vs Exceptions

 Throwing an exception starts the exception
process.

 It is like throwing a ball (the exception is the
ball).

 When throwing a ball, the ball starts moving
when someone throws it.

 Use the throw statement to actually throw an
exception.

© 2023 Arthur Hoskey. All
rights reserved.

throw

statement

Throwing vs Exceptions

 Catching an exception is fundamentally different
than throwing.

 The person catching the ball will receive the ball
the thrower sent.

 Use a try/catch block to catch an exception.

 The try/catch block receives the exception that
was thrown using the throw statement.

© 2023 Arthur Hoskey. All
rights reserved.

try/catch

block

Creating and Throwing An
Exception

 You can create methods that generate and throw
exceptions.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

public static void main(String [] args) {

try {

int quotient;

quotient = Divide(10, 0);

}

catch (Exception e)

{

System.err.println("Handled in main");

}

}

public static int Divide(int num, int den) throws ArithmeticException {

// If den is 0 then throw an exception

if (den == 0) {

ArithmeticException e;

e = new ArithmeticException();

throw e;

}

return num / den;

}

Throwing An Exception

Divide() can throw an

ArithmeticException

Get the exception ready to throw

by creating a new instance of the

ArithmeticException class

Actually throw the

exception

Catch exception. This

try/catch block will catch

the exception that is

thrown by Divide.

© 2023 Arthur Hoskey. All
rights reserved.

Create Your Own Exception Class

 You can create own exception class and use it in programs
just like the prewritten exception classes.

 Just create a class that is derived from Exception.

 You can put information specific to your exception in the
class. For example, a "bad" value that a user entered can
be stored in the class.

 We can create instances of MyException and throw them
similar to what we did with ArithmeticException in the
previous slide.

class MyException extends Exception {

// Store the bad value that was entered in a variable

private int badValue;

// Other member variables and methods go here…

}

© 2023 Arthur Hoskey. All
rights reserved.

End of Slides

 End of slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Exception Handling
	Slide 4: Error Handling Overview
	Slide 5: Error Handling Overview
	Slide 6: Error Handling Overview
	Slide 7: Divide By Zero
	Slide 8: Divide By Zero
	Slide 9: Divide By Zero
	Slide 10: Divide By Zero
	Slide 11: Divide By Zero
	Slide 12: Wrong Input Type
	Slide 13: Wrong Input Type
	Slide 14: Divide By Zero
	Slide 15: Handling Exceptions
	Slide 16: Handling Exceptions
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Handling Exceptions
	Slide 21
	Slide 22: Handling Exceptions
	Slide 23: Handling Exceptions
	Slide 24: Handling Exceptions
	Slide 25
	Slide 26
	Slide 27: Java Exception Hierarchy
	Slide 28: Checked Vs Unchecked Exceptions
	Slide 29: Checked Vs Unchecked Exceptions
	Slide 30: Java Exception Hierarchy
	Slide 31: Checked Vs Unchecked Exceptions
	Slide 32: Catch Block Order
	Slide 33
	Slide 34: Catch Block Order
	Slide 35
	Slide 36: Catch Block Order
	Slide 37: finally Block
	Slide 38: finally Block
	Slide 39: finally Block
	Slide 40: System.exit
	Slide 41: Throwing vs Exceptions
	Slide 42: Throwing vs Exceptions
	Slide 43: Creating and Throwing An Exception
	Slide 44: Throwing An Exception
	Slide 45: Create Your Own Exception Class
	Slide 46: End of Slides

